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abstract Finite mixture methods are applied to bird band-recovery studies to allow for

heterogeneity of sur vival. B irds are assumed to belong to one of ® nitely many groups,

each of which has its own survival rate (or set of survival rates varying by time and /or

age). The group to which a speci® c animal belongs is not known, so its survival probability

is a random variable from a ® nite mixture. Heterogeneity is thus modelled as a latent

eþ ect. This gives a wide selection of likelihood-based models, which may be compared

using likelihood ratio tests. These models are discussed with reference to real and simulated

data, and compared with previous models.

1 Introduction

Individual birds in band-recovery studies frequently have intrinsic diþ erences of

survival probability. This may lead to bias in survival estimates, and underestimation

of standard errors (Pollock & Raveling, 1982; Nichols et al., 1982; Brownie et al.,

1985). The presence of heterogeneity of survival in a data set is characterized by an

increasing average survival rate with increasing years since banding, as those

remaining in the cohort are mainly the birds with higher survival rates. This is the

opposite eþ ect to that of senescence, in which aging birds move to lower survival

rates through time, giving a decline in the average survival rate for the cohort.

Burnham & Rexstad (1993) proposed models that included beta distributional

variation in individual survival rate. This is an in ® nite mixture, as the survival

parameter is from a continuous distribution. This provided a likelihood framework

for testing and comparing the heterogeneous models with the homogeneous models

of Brownie et al. (1985).

This paper provides an alternative model using a ® nite mixture, employing
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methods similar to those of Norris & Pollock (1995, 1996) and Pledger (2000) for

modelling capture probabilities in closed populations. We assume there are G

groups of birds, with the intrinsic survival for birds within each group being

constant. The ® nite mixture approach also provides likelihood methods for estima-

tion and model comparison, and a wide range of models is available for comparison

and choice.

In Section 2 we give notation and select a model formulation. Section 3 has a

detailed discussion of one model with a ® nite mixture used to model heterogeneity

of survival, and in Section 4 this is generalized to show a range of models possible

by this method.

Section 5 has a substantial example with many models ® tted, and in Section 6

we appraise and compare models using simulations. Section 7 has discussion and

conclusions.

2 Model choice and notation

There are two formulations for the band-recovery models:

(1) The (S, f ) model used by Brownie et al. (1985) and Burnham & Rexstad

(1993). S j is the survival rate in year j. The recovery rate f j in year j is the

product (1 2 S j)c j k j of the probabilities for mortality 1 2 S j , retrieval c j and

band reporting k j .

(2) The (S, r) model used by (for example) Catchpole et al. (1995) replaces fj

with (1 2 S j)rj , where rj is a (retrieval and) reporting rate.

Since we may wish to model heterogeneity in S alone, we use the second formula-

tion, which has separated the survival and reporting terms.

The model with (for example) both S and r dependent on time (year), Model 1

of Brownie et al. (1985), is speci® ed here as {r t , S t}, in accord with the notation in

Lebreton et al. (1992). The probability that a bird ringed in year i (i 5 1, 2, . . . k)

dies and has its band reported in year j (i < j < l ) is

Prob(i, j) 5 S iS i +1 . . . S j 2 1 (1 2 S j )rj

with the convention that if i 5 j the S terms form an empty product with value 1,

so that

Prob(i, i) 5 (1 2 S i)ri

The probability of the band not being reported in any of the l reporting years is

Prob(i, l + 1) 5 1 2 +
l

y 5 i

Prob(i, y)

With this notation, we now consider in detail a model that allows for heterogeneity

of survival.

3 Heterogeneity of survival

Heterogeneity between individuals may be allowed in a model by assuming each

bird has an intrinsic survival probability, which is a realization of a random variable

S. Burnham & Rexstad (1993) used the beta distribution for this part of their

modelling. We use instead a distribution with a ® nite support: each individual has
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survival rate S g with probability p g , g 5 1, 2 . . . G, R p g 5 1. The use of G groups

with constant survival probability within each group is an artefact to introduce

heterogeneity: we do not believe there really are G groups. Mixture models often

have little power to discriminate between ® nite and in ® nite mixtures, or to ® nd the

number of groups in a data set (Lindsay, 1995, Section 1.4.2, but see also

Richardson & Green, 1997). Models using ® nite mixtures with two, three or more

groups, or the in® nite mixture of the beta distribution, frequently give very similar

® ts to the data.

We now de® ne a model that allows for time eþ ects in the reporting rate and

heterogeneity in the survival rate, Model {rt , ShG
}. This is a generalization of Model

{rt , S c } with constant S (the (S, r) formulation of Model 2 of Brownie et al., 1985).

Each bird banded in year i has probability p g of belonging in group

g(g 5 1, 2 . . . G), in which case

Prob(i, j ½ Groupg) 5 S
j 2 1
g (1 2 Sg )rj

Thus, the overall probability of its band being reported in year j is

Prob(i, j) ½ Groupg) 5 +
G

g 5 1

p g S
j 2 i
g (1 2 Sg )r j

As before, if i 5 j the S terms disappear, and

Prob(no recovery of band) 5 1 2 total probability of recovery

The model may be ® tted by maximizing the log of this likelihood:

L 5 *
k

i 5 1{ *
l

j 5 i f +
G

g 5 1

p g S
j 2 i
g (1 2 Sg )rj g

xi j

3 f 1 2 +
l

j 5 i

+
G

g 5 1

p g S
j 2 i
g (1 2 Sg )rj g

xi,( l + 1)

}
where x i,j is the number of bands from the year i cohort reported in year j, and

x i,(l +1) is the number of bands not reported. This likelihood provides maximum

likelihood estimates and the machinery of goodness-of- ® t tests and likelihood

ratio tests.

For example, we may compare a two-group complete model {rt , S h2
} with the

one-group reduced model {r t , S c}. This is essentially a test for the presence of

heterogeneity. The reduced model is at the boundary of the parameter space of the

complete model (e.g. at p 1 5 0), which means the regularity conditions required

for a standard likelihood-ratio test are not met. Instead, we may do a non-standard

test, using the usual test statistic

2(log LC 2 log LR )

where C and R refer to the complete and reduced models respectively, but testing

it against a distribution that is a 50 : 50 mixture of zeros and v
2
1 (Self & Liang,

1987; Pledger, 2000). The signi® cance level for this test is obtained by halving the

v
2
1 p-value. This approximate result is from Self & Liang’ s Theorem 3 Case 5,

although their conditions are not exactly met. They allow for testing if a parameter

is on the boundary of the parameter space. In our test, we may take p 1 < 0.5 to

uniquely label group 1 as the smaller group. When we test H 0 : p 1 5 0, say, if H0 is

true, the parameter S1 vanishes. This complication is discussed in Davies (1977,

1987). It does not adversely aþ ect the Self & Liang result, and the 50 : 50 mixture

of zeros and v
2
1 is still seen to hold by simulation checks (Pledger, 2000). Other
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authors have also found this distribution by diþ erent methods. This approximate

test is quicker than the alternative of using a bootstrap procedure.

We may also test whether more than two groups are needed to adequately

represent the data. The extra parameters give diþ erent ways of reducing from (say)

three groups to two ( p 1 5 0, S1 5 S2 , S1 5 S3 or S2 5 S 2), and this is not covered in

Self & Liang (1987). Simulation con® rms that the 50 : 50 mixture of 0 and v
2
1 is

no longer valid. Here, a bootstrap procedure is recommended.

If the number of groups is regarded as a parameter to be estimated, there is a

global maximum likelihood achieved at a certain number of groups, and there is

no change in the maximized likelihood if more groups are added (Norris & Pollock,

1996; Lindsay & Roeder, 1992). We may choose the number of groups at which

the global maximum likelihood is achieved, or we may ® t separate models with

increasing numbers of groups, selecting the model beyond which there is no

signi® cant increase of maximum likelihood, using the non-standard likelihood ratio

test described above. In practice, the two approaches often lead to the same choice

of number of groups, and in many cases only two groups are required to provide a

parsimonious model that ® ts the data well.

The introduction of heterogeneity by modelling a parameter as a random variable

from a ® nite mixture may now be used for a variety of new models.

4 More general models

One more general model allows for both time (year) and heterogeneity eþ ects in

survival. If the bird groups have survival rates following similar patterns through

time, although at diþ erent levels, the time and heterogeneity eþ ects may be made

additive on the log scale (e.g. the proportional eþ ect model of Catchpole et al.,

1995). However, we use the alternative of linearity on the logistic scale, not least

because it maintains survival estimates between 0 and 1. In many situations these

alternatives give similar results.

The main eþ ects model, {rt , S t + hG
}, has

Prob(i, j) 5 +
G

g 5 1

p g ( *
j 2 1

b 5 i

Sbg ) (1 2 S jg)r j (1)

where the survival rate for group g in year j is modelled as

log( S jg

1 2 S jg ) 5 l + s j + g g (2)

A corner-point parameterization with s 1 5 g 1 5 0 makes l the logit of survival for

group 1 at year 1, s 2 to s l adjustments for later years, and g 2 to g G adjustments for

the other groups. The time eþ ect s j is ® xed, while the heterogeneity eþ ect g g is a

latent eþ ect because each bird’ s group is unknown. This e þ ect behaves like a

random eþ ect in experimental design, with g taking values 1, . . . , G with probabili-

ties p 1 , . . . , p G respectively. Equations (1) and (2) are combined with the likelihood

L 5 *
k

i 5 1 {*
l

j 5 i

[Prob(i, j)]xi j 3 f 1 2 +
l

j 5 1

Prob(i, j ) g
xi,(l + 1)

}
to give the model formulation.
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The special case with all s j 5 0 reduces to a model equivalent to {rt , ShG
}. Hence,

a test of H0 : all s j 5 0 is testing if year has any eþ ect on survival rate, while allowing

for heterogeneity. This is a standard likelihood ratio test with v
2 on l 2 1 degrees

of freedom (Self & Liang, 1987). Similarly, if G 5 2, a test of H0 : g 2 5 0 tests for

the presence of heterogeneity, while allowing for time eþ ects. This is another non-

standard likelihood ratio test, tested on a 50 : 50 mixture of 0 : v
2
1 .

It is possible to model survival with interactive time and heterogeneity eþ ects.

The model {rt , S t 3 hG
} assumes

log( S jg

1 2 S jg ) 5 l + s j + g g + ( s g ) jg

with suitable constraints to give (l 2 1)(G 2 1) independent interaction parameters

( s g ) jg (e.g. ( s g ) j1 5 ( s g )1g 5 0 for all j and g). This model allows diþ erent patterns

over the years for diþ erent groupsÐ a year that is good for survival of one group

may be poor for another. Hypothesis testing would start with the interaction term,

to preserve hierarchical models that do not admit an interaction term without its

associated main eþ ects.

If there may be some eþ ect due to years since banding, such as a lower survival

rate in the ® rst year after banding, it is allowed for by modelling the survival of

group g in year j for year a since banding, S jag , as

log( S jag

1 2 S jag ) 5 l + s j + a a + g g

This is model {rt , S t + a + hg
}, with a a providing the (® xed) e þ ect of year since banding

(age in the study). We could let a 5 1 for the ® rst year, and a 5 2 for subsequent

years, and use the constraint a 1 5 0. The regular likelihood ratio test of H0 : a 2 5 0

would check if there is a diþ erent survival rate in the ® rst year, while allowing for

time and heterogeneity eþ ects.

The heterogeneity may be put in the reporting rate parameter instead, if that

seems a useful model to try. A model with the main eþ ects of time and heterogeneity

eþ ects in r and time eþ ects only in S is {rt + hG
, S t}, with

Prob(i, j ) 5 ( *
j 2 1

b 5 i

Sb ) (1 2 S j) +
G

g 5 1

p g r jg

The reporting rate rjg satis® es

log( r jg

1 2 r jg ) 5 l ¢ + s ¢j + g ¢g (3)

with ® xed time eþ ects s ¢j and latent heterogeneity eþ ects g ¢g . The prime denotes

parameters for r rather than S.

If the possible heterogeneity is thought to extend over both survival and reporting

rate, the model would use

Prob(i, j) 5 +
G

g 5 1

p g f ( *
j 2 1

b 5 i

Sbg ) (1 2 S jg )rjg g
with S jg and rjg modelled as in equations (2) and (3).
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All these models, and more, may be adapted for the S, f formulation, if desired.

However, this parameterization may not lead to sensible models. For example, if

survival rates are modelled using a mixture, then recovery rates ( f ) are unlikely to

be homogeneous as this parameter implicitly includes (1 2 S ).

There is some parameter redundancy when the interactive models are invoked,

and this must be allowed for in counting parameters and ® nding degrees of

freedom.

These models are all ® tted by maximum likelihood, which makes available

parameter estimates, their standard errors and their pro ® le likelihood intervals.

5 Example

To illustrate these models, we use the San Luis adult male mallard data of Brownie

et al. (1985, p. 28), with nine banding years and recovery years. The recovery

matrix is in Table 1.

Table 2 shows the models ® tted, their numbers of independent parameters,

residual deviances ( 2 2 3 maximized likelihood), and their Pearson goodness-of-® t

v
2 statistics, degrees of freedom and p-values.

The Pearson goodness of ® t tests show that most of the models ® t the data

adequately. Only models with no allowance for time eþ ects in either r or S fail to

give a good ® t at the 5% signi ® cance level. Similar results are found with the

deviance goodness of ® t test. The variance in¯ ation factors (Pearson’ s v
2 /d.f.) have

mean 1.146, minimum 0.638 and maximum 1.597, values near enough to 1 to

indicate no serious overdispersion problem.

For model comparison, we ® rst consider the four models with constant para-

meters or time eþ ects only, and their counterparts with heterogeneity of survival

added. In each case the model was improved by modelling two bird groups for

heterogeneity. The four tests are all non-standard ones, on a 50 : 50 mixture of 0 : v
2
1 .

{rc , S c } versus {rc , Sh2
}: test statistic 6.647, p 5 0.0014

{r t , S c } versus {r t , Sh2
}: test statistic 6.603, p 5 0.0051

{rc , S t } versus {rc , S t + h2
}: test statistic 3.891, p 5 0.0243

{r t , S t } versus {rt , S t + h2
}: test statistic 11.871, p 5 0.0003

Going to three bird groups gives no reduction in residual deviance, indicating

that two groups are adequate to represent the heterogeneity.

There was little to choose among the models {rt , Sh2
}, {rc , S t + h2

} and {rt , S t + h2
}.

Table 1. Recovery matrix for San Luis adult male mallards

Recovery year
Banding Number not

year 1 2 3 4 5 6 7 8 9 recovered

1 10 13 6 1 1 3 1 2 0 194

2 0 58 21 16 15 13 6 1 1 518

3 0 0 54 39 23 18 11 10 6 724

4 0 0 0 44 21 22 9 9 3 482

5 0 0 0 0 55 39 23 11 12 803

6 0 0 0 0 0 66 46 29 18 918

7 0 0 0 0 0 0 101 59 30 1060

8 0 0 0 0 0 0 0 97 22 819

9 0 0 0 0 0 0 0 0 21 291
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Table 2. Models ® tted to San Luis adult male mallard data (Brownie et al., 1985, p. 28)

Goodness of Fit
Residual No. indep. Pearson

Model deviance parameters v
2 d.f. p-value

{rc , Sc } 8673.916 2 54.3 34 0.0150

{rt, Sc } 8650.582 10 32.2 26 0.1865

{rc , S t} 8648.625 10 31.2 26 0.2197

{rt, S t} 8640.555 17 23.6 19 0.2114

{rc , Sa} 8667.313 3 47.8 33 0.0457

{rt, Sa} 8643.979 11 25.5 25 0.4347

{rc , Sh2
} 8667.269 4 47.7 32 0.0363

{rt, Sh2
} 8643.979 12 25.5 24 0.3790

{rc , Sh. b } 8691.203 3 59.3 33 0.0033

{rt, Sh. b } 8646.094 11 27.6 25 0.3266

{rc , S t + a} 8654.714 11 37.0 25 0.0577

{rt, S t + a} 8632.179 19 14.7 17 0.6158

{rc , S t + h2
} 8644.734 12 32.0 24 0.1262

{rt, S t + h2
} 8628.684 20 13.9 16 0.6058

{rc , Sa + h2
} 8667.270 5 47.9 31 0.0268

{rt, Sa + h2
} 8643.978 13 25.5 23 0.3249

{rc , S t + a + h2
} 8644.077 13 26.1 23 0.2933

{rt, S t + a + h2
} 8626.230 21 9.6 15 0.8458

{rt + a, Sc } 8644.358 11 25.9 25 0.4110

{rt + a, S t} 8636.595 19 19.2 17 0.3157

{rt 3 a, Sc } 8631.661 18 12.7 18 0.8078

{rt 3 a, S t} 8624.326 26 8.0 10 0.6298

The ® rst versus the third has p 5 0.0557, and the second versus third has

p 5 0.0417. All three have a good ® t to the data, as seen in the goodness of ® t tests

in Table 2. The in ® nite mixture model with individual survival rates based on a

beta distribution was also tried. This is the (S, r) version of the (S, f ) model in

Burnham & Rexstad (1993). This beta model, {rc , Sh. b }, was also in the same group

of `best’ models, as indicated by high p-values in Table 2. We did not use the

Akaike information criterion (AIC) for model comparison, as the standard AIC

does not apply to mixture models.

These three models exhibit similar and interesting behaviour. We consider

Model {r t , Sh2
} in detail. It distinguishes a small group (8%, p Ã 1 5 0.08) of birds

with very low survival rate (SÃ 1 5 0.0064), and the rest (92%) with survival rate

SÃ 2 5 0.6783. (This gives an average survival estimate of p 1S1 + p 2S2 5 0.6247, close

to SÃ 5 0.6375 from {rt , S c}.) It seems that the recovery matrix is using the

opportunity o þ ered by two bird groups to signal one group which dies in the ® rst

year after banding and another which progresses through the years with more

moderate losses. This led us to try another model for comparison, model {rt , Sa},

which reverts to a single group of birds, but introduces an a eþ ect (for `age in the

study’ , years since banding) allowing for one ® rst-year survival rate and another

rate for subsequent years (reminiscent of models for birds ringed as nestlings).

This has an almost identical ® t to Model {rt , Sh2
}. For this data set, we cannot

distinguish between heterogeneity of survival rates among individuals, and a

common pattern of survival for all birds with high losses in the ® rst year after

banding. No advantage was found in including all three eþ ects of time, years since

banding, and heterogeneity in the survival parameter.
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A more realistic model might use reporting rate to represent the e þ ect of time

since banding, because of birds still being near the banding location. This is Model

{rt 3 a , S t} in Table 2, with raj having a 5 1 for the ® rst year and a 5 2 for subsequent

years (with no parameter for r11 ). (Previous authors have used r*t for the ® rst year

and rt for subsequent years.) An alternative with fewer parameters would be a main

eþ ects version {rt + a, S t}, with

log( rta

1 2 rta ) 5 l ¢ + s ¢j + a ¢a

where the prime denotes parameters for r rather than S.

Table 2 shows that {rt + a, S c } is actually preferred to {rt + a, S t} (test statistic 7.763,

8 d.f., p 5 0.4570). This simpler {rt + a , S c } model is also very close to the `best’

models. For example, comparing it with {rt , S c} gives p 5 0.0126 (test statistic

6.224 on 1 d.f.). This is not quite as useful as the move from {r t , S c} to {rt , Sh2
}

tested above (p 5 0.0051), but it is comparable.

The main eþ ects version rt + a is proving better than the interactive rt 3 a , both with

S c (p 5 0.0798) and with S i (p 5 0.0921). This could be of interest to modellers

even when no heterogeneity is being incorporated: if there is a consistent pattern

of recovery rates being higher in the ® rst year since banding, there is a saving of

parameters to be made in using the main eþ ects rather than the interactive model.

6 Appraisals

To appraise the models, we ran 100 simulations from each of three scenarios. All

three had rt , and the assumptions for S were S c , Sh2
and Sh. b respectively. In each

case, the input parameters were those estimated for the San Luis male adult mallard

data. Each simulated recovery matrix was analysed by the same three models.

Model selection from the simulated data gives an idea of power and test size in

this region of the parameter space. With data generated from homogeneous survival

rates, S c , the non-standard likelihood ratio test at a nominal a 5 0.05 selected Sh2

over S c in 13% of cases, and Sh. b over S c in 9% of cases. The true size of each of

these tests is higher than the assumed 5%, with Sh2
being more likely than Sh. b to

`detect’ heterogeneity when none is there. If the simulated data have Sh2
hetero-

geneity, we found Sh2
selected over S c in 89% of cases, and Sh. b over S c in 79% of

cases. With data generated from the Sh. b model, these percentages were 88% and

87% respectively. Both Sh2
and Sh. b are powerful at detecting heterogeneity around

these parameter values. If the skewness of the individual survival rates distribution

matches that of the ® tted beta distribution, the powers are similar. If , however, the

skewness does not match, Sh2
with its extra parameter is better able to ® t the third

moment, and this model has more power than Sh. b .

Basic parameter estimates and their standard errors (rounded to three decimal

places) are in Table 3. Analysis by the heterogeneous models gives higher standard

errors. With true model Sh2
, analysis by Sh2

shows positive bias in p 1 and S1 - the

maximum likelihood procedure is unwilling to signal a very small group with

practically zero survival. Even with data generated from two groups, analysis by

that same model shows an inability to retrieve those groups; this seems typical of

the use of ® nite mixtures in capture- recapture (Pledger, 2000) and band recovery

models. The average survival in that ® rst year, however, is less biased:

p Ã 1 SÃ 1 + p Ã 2 SÃ 2 5 0.151 3 0.136 + 0.849 3 0.6715 5 0.627
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Table 3. Basic parameter estimates and their standard deviations from the simulations. All the models

use rt for the reporting rates

Input Analysis

model model S p 1 p 2 S1 S2 a b rÅ

Sc Inputs: 0.638 0.184

Sc Sc 0.636 0.184

(0.017) (0.008)

Sc Sh2
0.195 0.805 0.419 0.713 0.203

(0.293) (0.293) (0.287 ) (0.122 ) (0.055)

Sc Sh. b 29 025 16 396 0.187

(45 334) (25 805) (0.010)

Sh2
Inputs: 0.080 0.920 0.006 0.678 0.188

Sh2
Sc 0.636 0.184

(0.018) (0.008)

Sh2 Sh2
0.151 0.849 0.135 0.715 0.204

(0.132) (0.132) (0.179 ) (0.082 ) (0.067)

Sh2 Sh. b 1 051 593 0.214

(10 446) (5 891) (0.046)

Sh. b Inputs: 4.450 2.314 0.204

Sh. b Sc 0.637 0.185

(0.017) (0.008)

Sh. b Sh2
0.290 0.710 0.337 0.789 0.240

(0.197) (0.197) (0.203 ) (0.117 ) (0.108)

Sh. b Sh. b 150.491 89.769 0.212

(1 434.824) (859.416 ) (0.028)

compared with an input value of 0.0797 3 0.0064 + 0.9203 3 0.6783 5 0.625. This

is consistent with results in ® nite mixtures that show that allocation to supposed

groups is often unreliable, although estimation of average parameters may be good

(Lindsay, 1995). When we use a two-group model, we do not suppose there really

are two groups.

Similarly, if Sh. b (with parameters a and b ) is used for both simulation and

analysis, the estimate of average survival in the ® rst year is reasonably close:

a Ã

a Ã + b Ã
5

150.491

150.491 + 89.769
5 0.626

compared with an input of 4.450 /(4.450 + 2.314) 5 0.658. This occurs despite the

very ¯ at likelihood surface in the a and b directions, as shown by their highly

variable and biased estimates.

A derived parameter vector of interest is the average survival rate SÅ of a cohort

through time, since heterogeneity causes this to rise as birds with lower survival

rates are lost from the population. The predicted trend in SÅ for Model S h2
starts

with SÅ 0 at time zero. After k years, a proportion p 1 S k
1 of group 1 birds has survived,

and p 2 S
k
2 of group 2, giving overall proportions of

p 1k 5
p 1 S

k
1

p 1 S
k
1 + p 2 S

k
2

and
p 2 S

k
2

p 1 S
k
1 + p 2 S

k
2

respectively

The average survival rate after k years is thus

SÅ k 5 p 1S
k
1 + p 2 S

k
2 5

p 1 S
k + 1
1 + p 2 S

k + 1
2

p 1 S
k
1 + p 2 S

k
2

5
E(S

k + 1 )

E(S
k )
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say, where the expectation is over the original two-group mixture distribution.

Similarly for Model Sh. b ,

SÅ k 5
E(S

k +1 )

E(S
k )

5
a + k

a + b + k

from the beta distribution moments.

Figures 1, 2 and 3 show these predicted trends in average survival for the three

simulation scenarios. Since the trend is being forecast ahead by only a few estimated

parameters ( p 1 , S1 and S2 for Sh2
, and a and b for Sh. b ), they have the potential to

become completely wrong over time. Model Sh2
will rise until it levels oþ at the

higher survival rate S2 , with an increasing proportion of Group 2 birds surviving,

while Model Sh. b rises towards 1 as its lower survival birds are removed.

If the simulated population actually has constant S (Fig. 1), the heterogeneous

models are overly eager to `detect’ heterogeneity, with Sh2
performing worse

than Sh. b .

Fig. 1. Predicted trend in mean survival rate, data simulated with constant S.

Fig. 2. Predicted trend in mean survival rate, data simulated with Sh2
.



Modelling heterogeneity of survival in band-recovery data 325

Fig. 3. Predicted trend in mean survival rate, data simulated with Sh. b .

With Sh2
simulations (Fig. 2), the Sh2

analysis leads to a curve that rises too high,

because of its reluctance to allow a very small group with practically zero survival,

while the beta model rises far too high as it goes towards 1.

Figure 3 shows the Sh. b simulations. The Sh. b analysis is remarkably close to the

input population despite the unreliable a and b estimates, while Sh2
is lower.

The relative performance of the two-group and the beta models for heterogeneity

will depend on the skewness and higher moments of the distribution of S. If these

happen to match the skewness and higher moments of the two-parameter beta

distribution, the beta analysis is likely to perform better. If , however, the skewness

of the true distribution does not match the beta, the extra parameter of the two-

group mixture is likely to help. In addition, more than two groups may be selected,

if there are enough data to signal an improved ® t.

7 Discussion

These methods provide a way to deal with `hidden’ heterogeneity in the datasets.

Explicit heterogeneity that is related to variables known only at the time of recovery

(e.g. wintering areas in migrating birds) could be handled by post-strati® cation

(Schwarz et al., 1988). Heterogeneity related to variables known at the time of

banding (e.g. gender) could be handled by the method of Lebreton et al. (1992).

Consequently, a two-group model could be used to assess if a covariate-based

model has su ý cient complexity to capture most of the heterogeneity in survival

and recovery rates that may be present.

If overdispersion is present in the data, with an overdispersion parameter above

say 3 or 4, one possible cause is parameter heterogeneity, with individuals having

unique parameters rather than the same one (Burnham & Anderson, 1998). This

indicates that heterogeneous models could be ® tted, and then compared with

models using an overdispersion parameter for their ability to correct the standard

error estimates.

These models also have immediate usefulness to assess acute handling mortality

or immediate tag loss. For example, the San Luis dataset indicated that a small

group of animals (about 8%) had essentially a zero survival rate. This could be
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indicative of either handling mortality or band loss. The act of tagging is very

stressful for deep water ® sh. These models could also be used to cross validate

estimates of initial tag shedding based on experiments from a mixture of single and

double tagged ® sh and multiple tag types (Barrowman & Myers, 1996). However,

Arnason & Mills (1981) investigated the e þ ects of continual tag loss and showed

that continual tag loss is confounded with mortality and leads to a downward bias

in the estimates. Consequently, these models would not be able to detect this type

of tag loss if loss operates independently of mortalityÐ but will be able to detect

tag loss if loss is related to area of banding, type of band used, person who did the

banding, etc.

The method could also be extended to Cormack- Jolly- Seber experiments. For

example, these models could easily account for transients, animals that move in

and out of the study population quickly. These would appear from the model

® tting in a similar fashion to the San Luis dataset, as a fraction of the animals with

very low apparent survival rate. A slight modi® cation of our approach gives the

model of Pradel et al. (1997), in which there were two groups de® ned, transients

and residents. Those with more than one capture were assigned to the resident

group, while those caught once were modelled as a two-group mixture, some (the

transients) with zero survival rate, and the rest with survival rate matching that of

the known residents. If there really are two such groups, the two slightly diþ erent

approaches to the modelling should give similar results.

These ® nite mixture models o þ er considerable scope for model building, and

should ® nd applications in many areas where heterogeneity is present.
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